Name | Amp. (mmol/kg) | 95% CI (mmol/kg) | Amp. (/tCr) | 95% CI (/tCr) | SD % |
---|---|---|---|---|---|
X.CrCH2 | 0.0000 | [0.000, 0.902] | 0.00000 | [0.0000, 0.0840] | 999% |
Ala | 0.0517 | [0.000, 2.995] | 0.00481 | [0.0000, 0.2788] | 999% |
Asp | 6.9456 | [5.649, 8.242] | 0.64661 | [0.5259, 0.7673] | 10% |
Cr | 7.3008 | [5.565, 9.036] | 0.67967 | [0.5181, 0.8412] | 12% |
GABA | 3.8616 | [2.366, 5.357] | 0.35950 | [0.2203, 0.4987] | 20% |
Glc | 1.3950 | [0.499, 2.291] | 0.12986 | [0.0464, 0.2133] | 33% |
Gln | 1.1490 | [0.195, 2.103] | 0.10697 | [0.0182, 0.1957] | 42% |
GSH | 2.7075 | [2.126, 3.289] | 0.25205 | [0.1979, 0.3062] | 11% |
Glu | 13.3170 | [11.939, 14.695] | 1.23977 | [1.1115, 1.3680] | 5% |
GPC | 1.9802 | [1.300, 2.660] | 0.18435 | [0.1210, 0.2477] | 18% |
Ins | 5.3293 | [3.579, 7.080] | 0.49614 | [0.3332, 0.6591] | 17% |
Lac | 0.7387 | [0.000, 3.873] | 0.06877 | [0.0000, 0.3605] | 216% |
Lip09 | 6.4496 | [0.000, 26.067] | 0.60044 | [0.0000, 2.4267] | 155% |
Lip13a | 1.9410 | [0.000, 11.192] | 0.18070 | [0.0000, 1.0420] | 243% |
Lip13b | 0.0000 | [0.000, 7.308] | 0.00000 | [0.0000, 0.6804] | 999% |
Lip20 | 0.0000 | [0.000, 1.877] | 0.00000 | [0.0000, 0.1747] | 999% |
MM09 | 0.0000 | [0.000, 19.213] | 0.00000 | [0.0000, 1.7886] | 999% |
MM12 | 1.6167 | [0.000, 16.614] | 0.15051 | [0.0000, 1.5467] | 473% |
MM14 | 7.6268 | [0.000, 31.866] | 0.71003 | [0.0000, 2.9666] | 162% |
MM17 | 2.3814 | [0.000, 6.644] | 0.22170 | [0.0000, 0.6186] | 91% |
MM20 | 12.2743 | [8.235, 16.313] | 1.14269 | [0.7667, 1.5187] | 17% |
NAA | 14.7358 | [13.261, 16.210] | 1.37184 | [1.2346, 1.5091] | 5% |
NAAG | 1.9547 | [0.699, 3.210] | 0.18197 | [0.0651, 0.2989] | 33% |
PCh | 0.0000 | [0.000, 0.741] | 0.00000 | [0.0000, 0.0690] | 999% |
PCr | 3.4408 | [1.931, 4.950] | 0.32033 | [0.1798, 0.4608] | 22% |
sIns | 0.2516 | [0.000, 0.555] | 0.02342 | [0.0000, 0.0517] | 62% |
Tau | 0.2474 | [0.000, 1.637] | 0.02304 | [0.0000, 0.1524] | 287% |
PEth | 1.4726 | [0.227, 2.718] | 0.13710 | [0.0212, 0.2530] | 43% |
Gly | 2.0020 | [0.000, 4.541] | 0.18637 | [0.0000, 0.4227] | 65% |
tNAA | 16.6904 | [16.284, 17.097] | 1.55382 | [1.5160, 1.5916] | 1% |
tCr | 10.7416 | [10.513, 10.970] | 1.00000 | [0.9787, 1.0213] | 1% |
tCho | 1.9802 | [1.827, 2.133] | 0.18435 | [0.1701, 0.1986] | 4% |
Glx | 14.4661 | [14.034, 14.898] | 1.34674 | [1.3065, 1.3869] | 2% |
tLM09 | 6.4496 | [6.096, 6.803] | 0.60044 | [0.5675, 0.6334] | 3% |
tLM13 | 11.1845 | [9.674, 12.695] | 1.04123 | [0.9006, 1.1818] | 7% |
tLM20 | 12.2743 | [11.111, 13.437] | 1.14269 | [1.0344, 1.2509] | 5% |
See the spant User Guide for details on water scaling.
Name | Value |
---|---|
Spectral SNR | 374.92 |
tNAA linewidth (ppm) | 0.0467 |
tCho linewidth (ppm) | 0.0575 |
tCr linewidth (ppm) | 0.0523 |
Water amplitude | 930967.4 |
Water suppression efficiency (%) | 0.206 |
Fit quality number (FQN) | 4.24 |
Baseline effective d.f. per ppm | 4.12 |
Lineshape asymmetry | 0.17 |
Spectral signal to residual ratio | 181.99 |
packageVersion("spant")
## [1] '3.2.9000'
Sys.time()
## [1] "2024-12-19 11:07:41 GMT"
print(params$fit_res$data, full = TRUE)
## MRS Data Parameters
## ----------------------------------
## Trans. freq (MHz) : 123.2492
## FID data points : 2048
## X,Y,Z dimensions : 1x1x1
## Dynamics : 1
## Coils : 1
## Voxel resolution (mm) : 30x20x20
## Sampling frequency (Hz) : 6002.4008682235
## Repetition time (s) : 2
## Reference freq. (ppm) : 4.65
## Nucleus : 1H
## Spectral domain : FALSE
## Number of transients : 64
## Echo time (s) : 0.028
## Manufacturer : Siemens
## Pulse sequence type : slaser
## Sequence name : %CustomerSeq%\dkd_svs_slaser_MoCoNav2
## TE1, TE2, TE3 (s) : 0.008, 0.011, 0.009
##
## Meta data
##
## $EchoTime
## [1] 0.028
##
## $FlipAngle
## [1] 90
##
## $SequenceName
## [1] "%CustomerSeq%\\dkd_svs_slaser_MoCoNav2"
##
## $ChemicalShiftReference
## [1] 2.7
##
## $NumberOfTransients
## [1] 64
##
## $Manufacturer
## [1] "Siemens"
##
## $PulseSequenceType
## [1] "slaser"
##
## $TE1
## [1] 0.008
##
## $TE2
## [1] 0.011
##
## $TE3
## [1] 0.009
##
## $fid_filt_dist
## [1] TRUE
##
## $dim_5
## [1] "DIM_COIL"
##
## $dim_6
## [1] "DIM_DYN"
##
## Affine matrix
## [,1] [,2] [,3] [,4]
## [1,] 29.99848366 -0.2004098 0.01623864 -1.282188
## [2,] -0.29153696 -18.8548050 6.66772652 -64.227051
## [3,] -0.07725763 -6.6675472 -18.85579872 -49.050060
## [4,] 0.00000000 0.0000000 0.00000000 1.000000
print(params$w_ref, full = TRUE)
## MRS Data Parameters
## ----------------------------------
## Trans. freq (MHz) : 123.2492
## FID data points : 2048
## X,Y,Z dimensions : 1x1x1
## Dynamics : 1
## Coils : 1
## Voxel resolution (mm) : 30x20x20
## Sampling frequency (Hz) : 6002.4008682235
## Repetition time (s) : 2
## Reference freq. (ppm) : 4.65
## Nucleus : 1H
## Spectral domain : FALSE
## Number of transients : 4
## Echo time (s) : 0.028
## Manufacturer : Siemens
## Pulse sequence type : slaser
## Sequence name : %CustomerSeq%\dkd_svs_slaser_MoCoNav2
## TE1, TE2, TE3 (s) : 0.008, 0.011, 0.009
##
## Meta data
##
## $EchoTime
## [1] 0.028
##
## $FlipAngle
## [1] 90
##
## $SequenceName
## [1] "%CustomerSeq%\\dkd_svs_slaser_MoCoNav2"
##
## $ChemicalShiftReference
## [1] 4.7
##
## $NumberOfTransients
## [1] 4
##
## $Manufacturer
## [1] "Siemens"
##
## $PulseSequenceType
## [1] "slaser"
##
## $TE1
## [1] 0.008
##
## $TE2
## [1] 0.011
##
## $TE3
## [1] 0.009
##
## $fid_filt_dist
## [1] TRUE
##
## $dim_5
## [1] "DIM_COIL"
##
## $dim_6
## [1] "DIM_DYN"
##
## Affine matrix
## [,1] [,2] [,3] [,4]
## [1,] 29.99848366 -0.2004098 0.01623864 -1.282188
## [2,] -0.29153696 -18.8548050 6.66772652 -64.227051
## [3,] -0.07725763 -6.6675472 -18.85579872 -49.050060
## [4,] 0.00000000 0.0000000 0.00000000 1.000000
print(argg)
## $metab
## [1] "svs_slaser_example/sub-01_svs.nii.gz"
##
## $w_ref
## [1] "svs_slaser_example/sub-01_ref.nii.gz"
##
## $output_dir
## [1] "sub-01"
##
## $external_basis
## NULL
##
## $p_vols
## WM GM CSF
## 0 100 0
##
## $format
## NULL
##
## $pul_seq
## NULL
##
## $TE
## NULL
##
## $TR
## NULL
##
## $TE1
## NULL
##
## $TE2
## NULL
##
## $TE3
## NULL
##
## $TM
## NULL
##
## $append_basis
## [1] "peth" "gly"
##
## $remove_basis
## NULL
##
## $pre_align
## [1] TRUE
##
## $dfp_corr
## [1] TRUE
##
## $output_ratio
## [1] "tCr"
##
## $ecc
## [1] FALSE
##
## $hsvd_width
## NULL
##
## $fit_opts
## NULL
##
## $fit_subset
## NULL
##
## $legacy_ws
## [1] FALSE
##
## $w_att
## [1] 0.7
##
## $w_conc
## [1] 35880
##
## $use_basis_cache
## [1] "auto"
##
## $summary_measures
## NULL
##
## $dyn_av_block_size
## NULL
##
## $dyn_av_scheme
## NULL
##
## $verbose
## [1] FALSE
Please cite the following if you found ABfit and spant useful in your research:
Wilson M. Adaptive baseline fitting for 1H MR spectroscopy analysis. Magn Reson Med. 2021 Jan;85(1):13-29. https://doi.org/10.1002/mrm.28385
Wilson, M. spant: An R package for magnetic resonance spectroscopy analysis. Journal of Open Source Software. 2021 6(67), 3646. https://doi.org/10.21105/joss.03646
Wilson M. Robust retrospective frequency and phase correction for single-voxel MR spectroscopy. Magn Reson Med. 2019 May;81(5):2878-2886. https://doi.org/10.1002/mrm.27605